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Abstract
In this paper we present a high repetition rate experimental platform for examining the spatial structure and evolution
of Biermann-generated magnetic fields in laser-produced plasmas. We have extended the work of prior experiments,
which spanned over millimeter scales, by spatially measuring magnetic fields in multiple planes on centimeter scales
over thousands of laser shots. Measurements with magnetic flux probes show azimuthally symmetric magnetic fields
that range from 60 G at 0.7 cm from the target to 7 G at 4.2 cm from the target. The expansion rate of the magnetic
fields and evolution of current density structures are also mapped and examined. Electron temperature and density of the
laser-produced plasma are measured with optical Thomson scattering and used to directly calculate a magnetic Reynolds
number of 1.4×104, confirming that magnetic advection is dominant at ≥ 1.5 cm from the target surface. The results are
compared to FLASH simulations, which show qualitative agreement with the data.
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1. Introduction

Magnetic fields are prevalent throughout the universe. The
generation of cosmic magnetism represents an important
problem in modern astrophysics. As described by Kulsrud
and Zweibel[1], the cosmological evolution of the universe
cannot be fully understood without solid knowledge of the
origin of magnetic fields, structures and evolution. These
fields are hard to detect as they are very weak (in the micro-
Gauss range) and far away[1–4]. Diagnostic techniques, such
as Faraday rotation and Zeeman splitting, are difficult to
implement in such contexts[1,5,6]. However, laboratory astro-
physics experiments, which reproduce astrophysical plasmas
scaled by dimensionless parameters, can supplement obser-
vational measurements by addressing these limitations[7,8].
Thus, the marriage of astrophysical observation and theory,
laboratory experimentation using laser-produced plasmas
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(LPPs) and computational modeling of such scenarios aid in
the pursuit of answering questions on cosmic magnetic field
generation.

One predominant theory for primordial cosmic magnetic
seed fields is the Biermann battery mechanism[1,9–11], which
is a thermo-electric process that spontaneously generates
magnetic fields in plasmas via non-parallel temperature and
density gradients. This effect was first described by Ludwig
Biermann in 1949[12] and has been studied in a variety of
plasma experiments[13–18] due to its importance not only
for cosmic fields but also for its influential role in many
laboratory plasma phenomena, such as magnetic reconnec-
tion[19], laboratory shocks[11,20] and components of inertial
confinement fusion schemes[21,22].

LPP platforms are commonly used to study these sponta-
neously generated magnetic fields[18,23]. Not only do LPPs
naturally produce the density and temperature gradients
needed to precipitate the Biermann battery, but also the
magnetic fields generated in laser experiments by the Bier-
mann battery mechanism play a significant role in the energy
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transport in plasmas, affecting particle dynamics[24], leading
to hot spots[25], fast electrons and ions[26], and producing
large magnetic pressures (i.e., high plasma-β)[27,28].

The amplitudes of laboratory-generated Biermann fields
range from weak (a few micro-Gauss) to very strong (mega-
Gauss)[27,28] and have shown a direct dependence on the
laser irradiation intensity in the range of 1012–1014 W/cm2.
McLean et al.[29] detected up to 300 kG fields; Stamper
et al. demonstrated MG fields at 1015 W/cm2, as did
Pisarczyk et al.[14] and Gopal et al.[15] in plasmas generated
by lasers with intensities above 1016 W/cm2. In all cases,
the peak amplitudes were found very close to the target
surfaces, at distances of less than 1 cm. A 2D map of
the Biermann battery effect was generated by McKee
et al.[16] extending 2 cm from the target surface. These
measurements also confirmed the findings of Bird et al.[30]

that stronger fields may be generated in the presence of a
background gas.

Although this large body of work establishes a foundation
for understanding the process of magnetic field formation,
there is a lack of data on how Biermann fields behave at
larger spatial scales, including the range over which magnetic
advection or diffusion dominates. In this paper we present
a new high repetition rate (HRR) experimental platform for
studying the generation and evolution of Biermann magnetic
fields in LPPs over large (tens of cm) spatial scales. By
combining an HRR laser driver and motorized magnetic
flux probe, we obtain over thousands of shots high spatial
resolution, 3D maps of the evolution of Biermann-generated
magnetic fields and current density structures. Additional
HRR measurements with an optical Thomson scattering
probe beam allow us to measure plasma density and tem-
perature. From this data we directly calculate the mag-
netic Reynolds number and show that magnetic advection
dominates at distances more than or equal to 1.5 cm from
the target. Finally, we compare our results to preliminary
FLASH simulations modeled after the experiments, which
show qualitative agreement with the data. (For more infor-
mation on the FLASH code, visit: http://flash.rochester.edu.)

2. Theoretical background

The evolution of the magnetic fields in a non-ideal resistive
magnetohydrodynamics framework is described by an induc-
tion equation of the following form:
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where
−→
B is the magnetic field, −→v e is the electron velocity,

η is the plasma resistivity, c is the speed of light,
−→
J is

the current density, Te is the electron temperature, ne is the
electron number density and e is the electron charge. The

first term on the right-hand side of Equation (1) describes the
convection of the magnetic fields in the plasma, the second
term denotes the diffusion of the magnetic field with respect
to the plasma, the third term is the Hall term, which describes
the redistribution of the magnetic fields due to Hall forces,
and the fourth term is the magnetic source term, also known
as the Biermann battery term.

In LPPs, the primary temperature gradient is perpendicular
to the axis of the plasma plume and the primary density
gradient is normal to the target surface (with higher density
closer to the target). The electrons collectively move parallel
with the pressure gradient at higher velocities than the heav-
ier ions. This action generates an electromotive force (EMF).
By Faraday’s law, this EMF in turn creates a magnetic flux,
and thus a magnetic field is spontaneously created in an
azimuthal direction around the plasma blow-off axis. The
term in the induction equation that is of interest in this study
is the source term:
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where θ̂ is the azimuthal unit vector. Note that in a cylindrical
framework, r = √

x2 + y2 is the radial coordinate and z is
the axial coordinate. Thus, derivatives in the radial and
axial directions for the electron temperature and density are
crucial to our understanding of Biermann fields generated in
the LPP context. How we measure such azimuthal fields is
discussed in the following section.

To determine if diffusion of the magnetic field dominates
over advection in our plasma, we estimate the magnetic
Reynolds number. The magnetic Reynolds number is found
by non-dimensionalizing Equation (1). This number is a
dimensionless ratio between the magnetic advection and
diffusion within a plasma and is defined as follows:

Rm = UL/η, (3)

where U is the velocity scale of plasma flow, L is the length
scale of the plasma flow and η is the magnetic diffusivity.
Here, Rm � 1 implies that advection dominates, whereas
Rm � 1 implies that diffusion dominates.

3. Experimental design

The experimental setup is illustrated in Figure 1. The
experiment took place inside a 1 m diameter, stainless
steel, cylindrical vacuum chamber. LPPs were created
by irradiating a 25 mm diameter cylindrical high-density
polyethylene (C2H4) target with a pulsed high-energy heater
laser at 34◦ incidence angle with respect to the target surface
normal. The heater laser was a Nd:glass system at 1053
nm wavelength, 15 ns pulse length, with a repetition rate
of up to 6 Hz and a maximum output energy of 20 J.

http://flash.rochester.edu
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Figure 1. A rendering of the experimental setup. (a) Top view. The origin of the coordinate system is the laser spot on target, with the corresponding axis
directions as depicted. (b) Typical B-dot probe traces for all three axes of the probe. (c) Side view. The translucent orange rectangles represent the planes in
which magnetic field data were collected.

The eight-pass amplification scheme involves a phase-
conjugation wavefront reversal technique to output a near
diffraction-limited spot[31]. In these experiments, the heater
laser energy was 10 J and the repetition rate was 1 Hz. The
laser was controlled and monitored through a custom-built
LabView application that allows automatic synchronization
of the laser with the diagnostics and the target motion
systems at 1 Hz. The laser was focused down to a 250
µm diameter spot onto the target by an f /25 lens, yielding a
nominal intensity of I ≈ 1.3×1012 W/cm2.

Measurements of the magnetic field flux were collected
using a three-axis magnetic flux (‘B-dot’) probe, the
design and construction of which is described in detail
elsewhere[32]. The B-dot probe consisted of three sets of
thin wire coils wound around three perpendicular axes, each
with a diameter of 3 mm. When a magnetic flux passes
through the wire coils in the probe, a current is induced.
This current is then passed through a differential amplifier
and recorded using a digitizer (250 MSamples/s, 125 MHz
bandwidth, 12 bit), which recorded for 3.5 µs after the laser
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shot. The recorded voltage signals are then integrated to
yield magnetic field measurements. The integration method
used is described in Section 4.

The B-dot probe was mounted on an automated three-axis
stepper motor-driven stage inside the chamber. An extensive
volumetric scan comprising thousands of shots was created
by moving the probe in a pre-defined 3D pattern at a 1 Hz
rate with spatial steps of 2 ± 0.05 mm. The target was
rotated and translated vertically in a helical pattern in order
to ensure a fresh surface for each shot. Five shots were
taken at each spatial position for data averaging in order to
account for shot-to-shot laser intensity fluctuations (approx-
imately 5% per shot[33]) and small shot-to-shot fluctuations
in the background noise detected by the B-dot probe. The
full spatial scanning capability of the motor drive setup is
[−7, −63] mm in the x direction, [7,139] mm in the y
direction and [−85,85] mm in the z direction, with the laser
spot representing the origin of the coordinate system. The
closest distance to the target for the B-dot probe was 7 mm,
limited by proximity to the laser path.

Due to the direction of the generated fields, we focus on
several planes that are perpendicular to the plasma blow-off
axis such that we can observe the azimuthal structure of the
generated fields. By combining many of these perpendicular
planes, we are able to create a 3D picture of the measured
Biermann fields. In this experiment, data were collected at
the same x and z points in planes at various distances from
the target surface along the plasma blow-off axis (y-axis), as
illustrated in Figure 1. Each plane was separated from the
surrounding planes by a spatial distance of 5 mm.

The plasma temperature and density were measured using
optical Thomson scattering[34]. For these measurements, the
plasma was probed by a separate 532 nm wavelength probe
laser with a 50 mJ output energy and 4 ns pulse width, at
a 1 Hz repetition rate. The probe laser enters the chamber
along the plasma blow-off axis (y-axis) and terminates on
the target. The small secondary laser plasma created by this
probe laser reaches the B-dot probe and Thomson scattering
volume hundreds of ns after the time of data collection and
thus does not affect the results. A detailed description of
the Thomson scattering setup and measurements has been
published separately[35].

4. Results and analysis

Magnetic flux measurements were taken in multiple planes at
varying distances from the target surface. The magnetic flux
was calculated from the measured voltage traces using the
following integration method, which is described by Everson
et al.[32]:
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where g = 10 is the amplifier gain, A is the attenuation factor,
which varies depending on the signal strength, nb = 10 is the
number of turns in the coils, a is the area of the coils deter-
mined by the calibration (ax ≈ 11.3 mm2, ay ≈ 9.1 mm2, az ≈
13.2 mm2),

−→
B o = 0 is the initial background field, V0 is the

background noise, which was previously subtracted, and τs is
the time constant associated with the resistor-inductor (RL)
circuit formed by the coils (τ ≈ 30 ns). The error of the resul-
tant magnetic fields was calculated by taking the standard
deviation of the five shots taken at each spatial position. The
data were then averaged over five shots for a better signal-to-
noise ratio and to account for the shot-to-shot laser energy
fluctuations.

The position of the B-dot probe was scanned in many
transverse planes at distances between 7 and 42 mm from the
target surface, each separated by a distance of 5 mm. These
planes are pieced together to allow for analysis of the mag-
netic field structure in three dimensions. A representative
portion of the magnetic field data is presented in Figure 2(a).
This figure depicts three data planes showing the detected
azimuthal magnetic fields, Bθ , at three distances from the
target surface. The contour values represent the magnitude
of Bθ and black vectors superimposed on the plots indicate
the magnetic field orientation, as measured by the B-dot
probe. In these planes, the LPP propagates out of the page.
The temperature gradient points toward the blow-off axis
(indicated by the red dot on each plot) parallel to the target
surface, and the density gradient points toward the target
surface (−̂y ). Thus, by ∇Te × ∇ne the detected azimuthal
fields are consistent with being generated by the Biermann
battery effect.

The magnitude of the largest azimuthal magnetic field
detected in each plane decreases with increasing distance
from the target (Figure 2(a)). The maximum azimuthal
magnetic field values for all planes versus the distance to the
plane are shown in Figure 3. A 1/ra fit applied to the data
shows good agreement. The inverse distance fit indicates that
there is a 1/r1.3 spatial decay for the maximum magnetic field
values as a function of distance from the target.

We calculate the current density Jy normal to each x–z
plane of data using Ampere’s law, J ∝ ∇ × B. The current
densities are shown in Figure 2(b), corresponding to the
same parameters as Figure 2(a). Initially, the current density
within each plane flows in the direction of plasma propaga-
tion (not shown). At times corresponding to the detection of
Biermann fields, current begins to flow in both the positive
(red) and negative (blue) directions along the blow-off axis.
This current flowing toward the target surface begins near the
origin of the plane and expands radially outward along with
the Biermann fields. This current structure suggests that a
current loop has formed, with the central current acting as
a return current. Our measurement planes are too coarse to
allow calculations of 3D current structures, although these
will be pursued in future experiments.
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Figure 2. (a) Contour plots of azimuthal magnetic field structure in several transverse planes at three representative times. Magnetic field vectors are denoted
by the black arrows. (b) The calculated current density along the plasma blow-off axis in several transverse planes at three representative times. The red dot
represents the laser spot and white spaces are positions that the probe could not reach due to mechanical constraints.

Figure 3. Plot of maximum azimuthal magnetic field versus distance from
the laser spot. The times at which each point occurs correspond to the times
in Figure 5. A 1/ra curve (red line) agrees well with the data with a value
of a = 1.3.

Figure 4 shows a streak plot of the magnetic field at
x = −0.7 mm. By applying linear fits to different features
in the plot, the expansion speed of the magnetic fields
was estimated to be between 300 and 370 km s−1. This is
consistent with the expansion speed estimated from time-
of-flight of the peak magnetic field at each measurement
plane, which yielded a speed of approximately 330 km s−1,

Figure 4. A streak plot of the total magnetic field (contour) from a y-
lineout at x = −0.7 mm, z = 0 mm. Linear fits (orange lines) are applied to
features of the magnetic field streak plot to determine the speed of different
magnetic field features.

as shown in Figure 5. The expansion velocity of the laser
plasma was calculated using the analytical model of Shaeffer
et al.[36], which yielded v ≈ 300±50 km s–1. This expansion
velocity is consistent with the experimentally determined
speed of the magnetic fields, which in turn indicates that the
magnetic fields propagate along with the plasma bubble via
advection, as discussed below.
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Figure 5. Plot of the maximum of the azimuthal magnetic field observed
on the magnetic flux probe (black) at different planes as a function of time.
A linear fit (blue line) to the data indicates a speed of 330 km s−1.

Electron temperature and density values were measured
using an optical Thomson scattering diagnostic. A single
data point at a spatial position of y = 1.5 cm from the heater
beam spot along the blow-off axis shows Te = 10±2 eV and
ne = (5.55±1)× 1016 cm−3. Using the Thomson scattering
and magnetic field data, we directly calculate the magnetic
Reynolds number via Equation (3) to be Rm ≈ 1.4 × 104

at y = 1.5 cm. This indicates that, at this point in the
system, advection with the plasma fluid flow dominates the
propagation of magnetic fields. Additional Thomson scatter-
ing measurements are required to determine if advection is
always the dominant process, if diffusion initially plays a role
in the movement of the magnetic fields and where and under
what conditions a transition between diffusion and advection
occurs. In future experiments, the optical Thomson scat-
tering diagnostic will be extended into two dimensions to
allow for measurements of electron temperature and density
gradients at all spatial points within the system.

5. Numerical modeling with FLASH

Ancillary to future measurements that will explore the
mechanisms behind the observed return current, and to
further interrogate the magnetic field structure in the LPP,
we have undertaken a series of simulations using the FLASH
code[37]. FLASH is a parallel, multi-physics, adaptive
mesh refinement, finite-volume Eulerian hydrodynamics
and magnetohydrodynamics (MHD)[38] code, whose high
energy density physics capabilities[39] have been validated
through benchmarks and code-to-code comparisons[40,41], as
well as through direct application to laser-driven laboratory
experiments[42–47].

The 2D Cartesian simulation is initialized from a
‘top-down’-perspective of the experimental configura-
tion shown in Figure 1(a). The simulation domain

Figure 6. (a) Visualization of the 2D simulation domain for the x−y plane,
that is, z = 0, at t = 0 for the laser-facing side of the target. The black
semi-circle region denotes the rod that supports the target material (grey).
The Peening laser beam enters the simulation domain at a 34◦ angle from
the +̂y-direction for positive values of x̂, reflecting the geometry of the
experimental setup provided in Figure 1(a). The region visualized in the
provided simulation results (Figures 7 and 8) is enclosed by the dashed red
line. (b) The power profile used to model the Peening laser heater beam in
FLASH with a peak of 1.333×109 W at 7.5 ns, which allows 10 J of energy
to be deposited to the target over 15 ns as in the experiment.

is illustrated in Figure 6(a), modeling the x–y plane
(i.e., z = 0) of the experiment. At room temperature
and pressure, we initialize a cylindrical rod of C2H4

plastic. The equation of state and opacity material
tables for C2H4 are computed using PrOpacEOS. (For
more information on PrOpacEOS, visit: https://www.
prism-cs.com/Software/Propaceos/overview.html.) The rod
initial mass density is ρ = 1.047 g/cc. We approximate the
temporal profile of the laser pulse using a triangular profile,
15 ns long, with a peak power of approximately 1.33×109 W
at 7.5 ns, as shown in Figure 6(b). This drive profile emulates
the 10 J Peening laser drive used in collecting the magnetic
field data. The laser enters from the +̂x-direction of the sim-
ulation domain at 34◦ with respect to the y-axis, to accurately
capture the incidence angle of the experimental drive.

In our finite-volume, single-fluid Eulerian simulations, the
vacuum surrounding the rod must be modeled using a low-
density gas. In order to image only the plasma expanding
from the target rod, in Figures 7 and 8 we applied two
threshold filters to visualize only the LPP properties against a
white background. Firstly, we exclude from the visualization
cells containing a mass fraction less than 95% of the rod
material. Then, we exclude cells whose effective ionization Z
is affected by heat flux from the compressed low-density gas
material at neighboring cells. These thresholds exclude cells
compromised by the presence of the low-density gas from

https://www.prism-cs.com/Software/Propaceos/overview.html
https://www.prism-cs.com/Software/Propaceos/overview.html
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Figure 7. Visualization of the FBB 2D FLASH simulation for (a) the elec-
tron number density ne, (b) the electron temperature Te, (c) the magnitude
of the velocity and (d) the magnetic Reynolds number at 150 ns after the
laser fires. We describe the threshold applied to these visualizations in the
text.

being folded into post-processing calculations. Similarly,
magnetic field generation due to the Biermann battery is
only computed in smooth-flow regions of the LPP to ensure
resolution-convergent magnetic field values[48].

We feature two simulation configurations that aim to
determine (1) whether the magnetic fields measured exper-
imentally are consistent with Biermann battery generated
magnetic fields, and (2), if so, to quantify the contribution of
Biermann battery magnetic field generation in the expanding
LPP versus the Biermann battery magnetic fields generated
due to the laser–target interaction, which are subsequently
advected by the expanding plasma.

In the first simulation, we retain the Biermann battery
source term in the induction equation operating throughout
the entire simulation duration (i.e., ‘full Biermann battery’
or FBB). In the second simulation, we artificially switch off
the Biermann battery source term as soon as the laser pulse
ends (i.e., ‘laser-only Biermann battery’ or LOBB). The
plasma properties of the ‘realistic’ FBB case are reported
in Figure 7, while the resulting magnetic field profiles for
both FBB and LOBB simulations are shown in Figure 8. In
Figure 7 we report the plasma properties of the LPP pre-
dicted by the FLASH FBB simulation. At the region of
interest (i.e., the locus of the Thomson scattering measure-
ments), we find electron number densities of the order of
6×1016 cm−3 (Figure 7(a)) that match well with the exper-
imentally obtained values discussed in Section 4. However,
since the FLASH simulations have not yet been calibrated

against the experimental results, we find that the simula-
tion under-predicts the plasma electron temperatures and
velocities (as shown in Figures 7(b) and 7(c)), and is con-
sistent with the experimental measurements only within
a factor of unity. More specifically, the LPP expansion
velocity in the FBB FLASH simulations is approximately
115–125 km s−1 on average, with a peak value of around
170 km s−1, when the plasma velocity is estimated to be 330
km s−1 in the experiment. Consistent with the experimental
results, we find that the LPP has magnetic Reynolds numbers
Rm� 1 (Figure 7(d)), indicating that the magnetic field
advection dominates resistive diffusion.

We note the emergence of two plasma lobes near the
locus of the laser drive, which are prominently seen in
the visualizations of the electron density and temperature
(Figures 7(a) and 7(b)). The two lobes surrounding the laser–
target spot at the origin and the overall asymmetry of the
LPP are caused by the asymmetry of the laser drive via
the non-normal incidence angle. One may orient themselves
conceptually by considering the bottom most density lobe
(+y-direction) on the laser-facing side of Figure 7(a). This
ejection has expanded more quickly in comparison to its
data-collection side (−y-direction) sibling, as hot, dense
material from the target has filled the comparably low-
density pseudo-vacuum bore from the simulated laser. These
density and temperature gradients cause the generation of
Biermann battery magnetic fields, and begin nanoseconds
after the laser illuminates the target. This is seen in both the
LOBB and FBB cases (Figures 8(a) and 8(b), respectively).
The two lobes surrounding the laser–target interaction region
have the strongest gradients, and thus the strongest magnetic
field values in the computational domain.

Major points of comparison between Figures 8(a) and
8(b) and the two resulting lineouts, taken at x = −0.7 cm
to match the location of the experimental B-dot probe
(Figure 8(c)), are the magnitude and structure (namely,
spatial variability) of the Biermann battery magnetic fields.
Firstly, the values of the magnetic fields within the simulated
LPP region are consistent and within range of the experi-
mentally measured values (Figure 2(a)), and are of the same
direction. This observation further supports the conclusion
that the experimentally observed magnetic fields originate
from the Biermann battery mechanism. Secondly, the mag-
netic fields featured in Figure 8(a) for the LOBB FLASH
simulation are smooth when compared to those obtained in
the FBB FLASH simulation (Figure 8(b)) and the experi-
mentally obtained magnetic field profiles (Figure 2(a)). By
maintaining the Biermann battery source term active for
the entirety of the simulation, the resulting magnetic fields
manifest increased variability in both large (Figure 8(b))
and small spatial scales (Figure 8(c)). These large-scale
spatial gradients of the Biermann battery magnetic fields can
therefore naturally account for the current structures seen
in Figure 2(b), thus indicating that the Biermann battery
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Figure 8. A visualization of the magnetic field values within the LPP region 150 ns after laser fires. (a) Results from a simulation where the Biermann
battery source term was calculated only during the 15 ns duration of the laser (LOBB case) and (b) results where the Biermann battery source term was
calculated for the entire simulation duration of 400 ns (FBB case). Provided in (c) are line-outs from (a) LOBB and (b) FBB simulations taken at x = −0.7 cm
and y = [0.7,2.0] cm away from the target.

mechanism in the experiment is active inside the LPP, even
after the laser has fired. These small-scale structures in
Figure 8(b), seen also in the oscillations present in the solid
line of Figure 8(c), are the result of spatial variations in the
misalignment of electron temperature and density gradients,
which result in continuous Biermann battery magnetic field
generation, in contrast to Figure 8(a). Kinetic magnetic field
generation effects, such as the Weibel instability, cannot
be modeled in FLASH, which is an Eulerian finite-volume
MHD code with isotropic pressure.

We speculate that the quantitative discrepancy between
the simulation results and the experimental measurements
of the electron temperature and velocity can be attributed to
the following factors that degrade simulation fidelity: (1) the
laser-power temporal profile in the simulation is roughly
approximated by a triangular pulse, which alters the deposi-
tion rate and the flow dynamics; (2) the FLASH simulations
need to be calibrated a posteriori using experimental data
to be able to reproduce the laser intensity of the experiment;
(3) the spatial resolution of the 2D simulation (80 µm) is not
sufficient to resolve well the laser spot size (∼ 200 µm). We
are currently executing a simulation campaign with a series
of 2D and 3D simulations at high resolution to calibrate the
laser deposition and further validate the simulation results in
a companion paper.

6. Conclusions

We have developed an HRR experimental platform to exam-
ine the magnetic fields induced by LPPs over large spatial
regions. Data were taken in planes between 0.7 and 4.2 cm
from the target surface, revealing azimuthal magnetic fields

that reached a peak value of 60 G in the measurement plane
closest to the target. The observed fields are azimuthally
symmetric, consistent with a simple model of Biermann bat-
tery field generation in a cylindrically symmetric LPP. Based
on the magnetic Reynolds number, Rm, directly calculated
from data at y = 1.5 cm, transport of the self-generated
fields away from the target surface is dominated by advection
(rather than diffusion). However, Biermann fields could
continue to be generated where the fields are measured, as
indicated by FLASH simulations of the experiment.

The current density along the blow-off axis was calculated
in each transverse plane via Ampere’s law. The structure
of the calculated currents indicates that there is a current
loop that forms coincident with the Biermann fields. Further
measurements are needed in order to calculate 3D current
densities in the system.

Optical Thomson scattering was used to provide measure-
ments of the plasma electron temperature and density at
y = 1.5 cm from the target surface along the blow-off axis.
We are currently working to expand the scanning capabilities
of the Thomson scattering diagnostic in order to obtain data
in 2D planes, which will allow us to determine temperature
and density gradients. Measurements of gradients will give
us a direct comparison to MHD theory and will allow us to
calculate Rm for all spatial points in our system.

Future experiments will continue to probe the evolution of
the Biermann battery fields over large volumes, allowing us
to map 3D regions of spontaneous field generation, as well
as regions of advection and diffusion-dominated propagation
within the system. Data collection will be expanded to planes
further from the target surface and into the gaps between the
existing data planes. In addition to increasing the resolution
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of data collection and expanding the volume over which we
probe, we plan to investigate the effects of background gases
on spontaneous magnetic field generation.

Further calibration and validation of our FLASH simula-
tions are currently underway. This work will yield improved
insights into (1) the coupling of the energy to the target, (2)
the magnetic field morphology, (3) the observed potential
return current and development of a potential current loop,
and (4) set the foundation to study how the plasma prop-
erties produced in our experiments affect Biermann battery
magnetic field generation. The simulation campaign will
also provide a framework for platform design for future
experiments.
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